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Section 6:

Conclusions and future directions



Tutorial summary

• Introduction
• Preliminaries

Definition of robustness in IR

Taxonomy of robustness in IR

• Adversarial robustness

Benchmark, settings, task definition and evaluations

Adversarial attacks: steal black-box knowledge → identify vulnerable positions →
add adversarial perturbations

Adversarial defenses: empirical defense, certified defense and attack detection

• Out-of-distribution robustness

OOD generalizability on unseen documents: new corpus and incrementation of

original corpus

OOD generalizability on unseen queries: query variation and unseen query type

• Robust IR in the age of LLMs
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Robustness: The Achilles’ heel of neural IR models
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If robustness is so hard, what can we do with our neural IR systems today?
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Mitigating robustness

• Before going-to-production: Optimizing training objectives, introducing

perturbations in advance

• While in production: Customizing analysis tools, monitoring of operational

status regularly

• Post-hoc correction: Improving system interpretability, optimizing for weaknesses
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What about tomorrow?

Much done, much left to do
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Future directions for adversarial robustness

There are currently some dilemmas of adversarial robustness in IR that are worthy of

future attention in the endeavor:

• Game theory: Modeling the market behavior of real SEO

• Toolkit: A systematic platform for integrating attack and defense methods

• Industrial practice: Considering the deployment in specific operations
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Future directions for adversarial robustness: Game theory

Background: In real search engine SEO scenarios, there are multiple attackers,

working individually or in groups, with consistent or not-exactly-consistent goals.

Dilemma: It is difficult to analyze the impact of this scaled SEO behavior on search

engines, let alone counter them.

Promising way: Game theory

• Multiple attackers seeking to profit is essentially a gaming problem

• Game theory can be used to find an equilibrium in this scenario

• SEO can be curbed by adjusting search engine rules to tilt the balance in favor of

the user
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Future directions for adversarial robustness: Toolkit

Background: With the development of adversarial robustness, various attacks, defense

methods and experimental datasets have emerged.

Dilemma: The lack of a unified specification leads to poor direct comparability of

methods, which in turn affects the accurate understanding of model robustness.

Promising way: Toolkit

• A high-quality codebase for robust IR research

• A unified data processing pipeline, simplified model configuration and automatic

hyper-parameters tuning features equipped
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Future directions for adversarial robustness: Industrial practice

Background: Current adversarial attacks and defenses are mainly studied in relatively

plain and contained experimental scenarios

Dilemma: In real search engines, the situation that may be faced is much more

complex, which may make it difficult to apply existing methods on the ground

Promising way: Industrial practice

• Foster academic-industrial collaborations on the topic

• Designing appropriate defense mechanisms for realistic and specific SEO scenarios
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Future directions for OOD robustness

There are also currently some dilemmas of OOD robustness in IR that are worthy of

future attention in the endeavor:

• Causality modeling: Identifying spurious correlation factors between documents

and queries

• Toolkit: A systematic platform for integrating OOD documents and queries

• Industrial practice: Considering the deployment in specific operations
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Future directions for OOD robustness: Causality modeling

Background: Some neural IR models focus on spurious correlations within the

domain, leading to poor out-of-distribution performance

Dilemma: To address this problem, we currently rely on constructing large amounts of

new domain data, which has significant overhead.

Promising way: Causality modeling

• Causal modeling can effectively identify the key factors in a document that

determine the relevance of a query

• When the domain changes, these key factors remain the same
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Future directions for OOD robustness: Toolkit

Background: In current approaches, OOD solutions for queries and documents are

relatively separate, yet in search engines, these two problems often arise simultaneously

Dilemma: It is currently difficult to analyze the full performance of specific methods

under various OOD issues

Promising way: Toolkit

• A unified experimental platform is needed to accommodate possible OOD

problems

• A good solution should perform consistently in a variety of OOD scenarios
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Future directions for OOD robustness: Industrial practice

Background: In real search engines, there are more specific requirements for the

fitness of neural IR models.

Dilemma: Current research on OOD is still based on a combination of existing

experimental datasets.

Promising way: Industrial practice

• Conduct experiments on real data from industrial scenarios, such as corpus

increments over time

• Designing the appropriate OOD solutions for realistic and specific search engine

scenarios
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So much to do . . .

• Developing new techniques for early detection and mitigation of adversarial attacks

• Exploring synergies between different aspects of robustness, such as adversarial

and OOD

• Enhancing model agility to quickly adapt to new data without extensive retraining

• Resources and sharing
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There is still a long way to go . . .
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What do we talk about when we talk about IR robustness?

“Oh, you mean adversarial robustness? OOD robustness? data

distribution? model architecture?”

“Actually, I mean this deployed model will not fail next month.”
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Ultimate goal for robust IR . . .

Built to withstand, designed to last!
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Q & A

Thank you for joining us today!

All materials are available at

https:

//sigir2024-robust-information-retrieval.github.io/

https://sigir2024-robust-information-retrieval.github.io/
https://sigir2024-robust-information-retrieval.github.io/
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