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Information retrieval

Information retrieval (IR) is the activity of obtaining information resources that are
relevant to an information need from a collection of those resources.
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Information retrieval Information repository

Given: User query (keywords, question, image, ...)
Rank: Information objects (passages, documents, images, products, ...)
Ordered by: Relevance scores



Application of information retrieval systems
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Core pipelined paradigm: Retrieval-Ranking

Ranked list

® Retrieval: Find an initial set of candidate documents for a query

® Ranking: Determine the relevance degree of each candidate



Evolution of retrieval models
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The evolution of retrieval models
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Evolution of ranking models

Probabilistic Learning to Neural ranking Pre-trained neural
models rank models models ranking models
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The evolution of ranking models

1975 2013 2019 2023
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Effectiveness of neural IR models

Neural IR models, including dense retrieval models (DRMs) and neural ranking
models (NRMs), have achieved promising ranking effectiveness

Data: [Dai and Callan, 2019, Lee et al., 2023, Ma et al., 2021]



Effectiveness of neural IR models

Neural IR models, including dense retrieval models (DRMs) and neural ranking
models (NRMs), have achieved promising ranking effectiveness

Let's take the NDCG@20 performance on TREC Robust04 as an example:
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Beyond effectiveness, what are the challenges we face when applying neural

IR models in the real world?




Challenges 1: Performance fluctuations between queries

2019]

Data: How We Keep Search Relevant and Useful; Image: [Su et al.,

Major web search engine makes over 3,200 changes to its search algorithms in a year
to optimize underperforming search results for a small number of queries

who invented the telegraph y Q who made listerine y Q
All Books Images News Shopping More Settings Tools All Shopping Images News Videos More Settings Tools
About 9,320,000 results (0.72 seconds) About 6,130,000 results (0.89 seconds)

Joseph Lister

Listerine is a brand of antiseptic mouthwash product. It is
promoted with the slogan "Kills germs that cause bad breath".
Named after Joseph Lister, a pioneer of antiseptic surgery,
Listerine was developed in 1879 by Joseph Lawrence, a chemist in
St. Louis, Missouri.

Samuel Morse !

Developed in the 1830s and 1840s by Samuel Morse (1791-1872)
and other i , the ionized long-distance
communication. It worked by transmitting electrical signals over a
wire laid between stations.

en.wikipedia.org

(a) A correct answer for the query “who invented the telegraph”. (b) A wrong answer for the query “who made listerine”.


https://blog.google/products/search/how-we-keep-google-search-relevant-and-useful/

Challenges 1: Performance fluctuations between queries

Data: How We Keep Search Relevant and Useful; Image: [Su et al., 2019]

Major web search engine makes over 3,200 changes to its search algorithms in a year
to optimize underperforming search results for a small number of queries
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@ Neural IR models need to avoid performance fluctuations between queries


https://blog.google/products/search/how-we-keep-google-search-relevant-and-useful/

Challenges 2: A dynamic flow of new data

Every day, billions of new web pages emerge and 15% of search queries are brand new
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Data: Forbes: Top Website Statistics For 2024; Image: How Do. ..
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https://www.forbes.com/advisor/business/software/website-statistics/#sources_section
https://ignitevisibility.com/seo-and-ppc-work-together/

Challenges 2: A dynamic flow of new data

Every day, billions of new web pages emerge and 15% of search queries are brand new
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@ Neural IR models need to continuously adapt to new queries and documents

Data: Forbes: Top Website Statistics For 2024; Image: How Do. ..
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https://www.forbes.com/advisor/business/software/website-statistics/#sources_section
https://ignitevisibility.com/seo-and-ppc-work-together/

Challenges 3: Search engine optimization (SEO)

About 60% of marketers get quality leads by SEO, and it can drive over 1,000% more
traffic than before, with a 14.6% conversion rate

Data: SEO Statistics - 2024; Image: Negative SEO

11


https://truelist.co/blog/seo-statistics/
https://www.hostpapa.com/blog/tag/negative-seo/

Challenges 3: Search engine optimization (SEO)

About 60% of marketers get quality leads by SEO, and it can drive over 1,000% more
traffic than before, with a 14.6% conversion rate

@ Neural IR models need to be able to withstand potential SEO attacks

Data: SEO Statistics - 2024; Image: Negative SEO
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https://truelist.co/blog/seo-statistics/
https://www.hostpapa.com/blog/tag/negative-seo/

Distinct from effectiveness, these challenges can be characterized as ro-

bustness

12



What is robustness?

Robustness refers to the ability of a system to withstand disturbances or external
factors that may cause it to malfunction or provide inaccurate results.

Effectiveness Robustness
The average performance - The performance in
under normal purpose abnormal situations

“Theoretically principled trade-off between robustness and accuracy” [Zhang et al., 2019]
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What is the robustness in IR?

There is a large volume of work that covers many aspects of IR robustness, e.g.,

“Robust Neural Information Retrieval” [Liu et al., 2024]; “Are Neural Ranking Model Robust?” [Wu et al., 2022]
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What is the robustness in IR?

There is a large volume of work that covers many aspects of IR robustness, e.g.,

® Performance variance emphasizes the worst-case performance across different
individual queries under the independent and identically distributed (I1D) data

® Out-of-distribution (OOD) robustness measures the performance on unseen
queries and documents from different distributions of the training dataset

¢ Adversarial robustness focuses on the ability to defend against malicious
adversarial attacks aimed at manipulating rankings

“Robust Neural Information Retrieval” [Liu et al., 2024]; “Are Neural Ranking Model Robust?” [Wu et al., 2022]
14



Impact of poor robustness on IR systems

If we only focus on effectiveness while ignoring robustness . ..
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Impact of poor robustness on IR systems

If we only focus on effectiveness while ignoring robustness . ..

® Search engine results pages may be flooded with commercial websites that
manipulate rankings

® When we want to explore a new topic, it's difficult to find relevant results

If these robustness issues are unresolved, they can directly impact user satisfaction,
which in turn hinder the widespread adoption of neural IR models

15



Can we follow the experience of other fields to solve the robustness issues

in IR?

16



A deep look into robust IR

User attention mainly focuses on the Top-K results and increases with higher rankings
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A deep look into robust IR

The core of robust IR is to protect the stability of the Top-K results

Q

N

é Rank 1

E TOp-K Rank 2
Neural IR =] A Rank K

models

é Q Rank K+1

=] SEO

E Rank N

@ Ranked list Ranked list

Image: How Do You Google? and What We Learned About .


https://www.forbes.com/sites/roberthof/2015/03/03/how-do-you-google-new-eye-tracking-study-reveals-huge-changes/
https://backlinko.com/google-ctr-stats

Comparison with CV and NLP

cv NLP IR
Representative task Image classification Text classification Document ranking
Input format Single image & Single text & Paired text (£
Input space Continuous & Discrete (& Discrete (%)
- - Stability of
Robustness St.aP'I'tY of St.a?'l'ty of top-K result =5
requirement classification (& classification (& (permutation
(dog or cat) (pos or neg) maintenance)
© normal  challenging % hard
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Comparison with CV and NLP

cv NLP IR
Representative task Image classification Text classification Document ranking
Input format Single image © Single text & Paired text (=)
Input space Continuous & Discrete (= Discrete (=)
- - Stability of
Robustness St??"'tY of St.a?'l'ty of top-K result =5
requirement classification (& classification (& (permutation
(dog or cat) (pos or neg) maintenance)
© normal  challenging % hard

Experiences from other fields may not be as effective in IR @

How can we tailor solutions for robustness issues in IR?

19



Publications dedicated to addressing robustness issues in IR

SIGKDD
. 60
SIGIR
WWW, CCS, 18.7%
° 40
20
0saBdil
52%
<2017 2018 2019 2020 2021 2022 >2023

The data statistics cover up to July 10, 2024.



Scan them!

All about robust information retrieval

Our survey Paper list Benchmark



Our survey about robust IR

Our survey on robust neural information retrieval [Liu et al., 2024], is now available!

[ Performance variance ]

Performance variance
under IID data

Top-K Robustness of TR

[R (th,.am; Drest, K) — Ry (fDmin: Diest K)| < 6

[ Out-of-distribution robustness ] [ Adversarial robustness ]
Generalizability on unseen The ability to defend against
queries and corpus adversarial attacks

“Robust Neural Information Retrieval: An Adversarial and Out-of-distribution Perspective”. [Liu et al., 2024]
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Scope of this tutorial

In this tutorial, we pay special attention to two frequently studied types of

robustness, i.e., adversarial robustness and OOD robustness
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Goals of the tutorial

® We will cover key developments in robust information retrieval (mostly
2020-2024)

m Definition and taxonomy of robustness in IR
m Adversarial robustness

m Out-of-distribution robustness

m Robust IR in the age of LLMs
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Goals of the tutorial

® We will cover key developments in robust information retrieval (mostly
2020-2024)

Definition and taxonomy of robustness in IR

Adversarial robustness

Out-of-distribution robustness

Robust IR in the age of LLMs

® Through this tutorial, we hope to ...
m Draw attention to the important topic of robustness in IR
m Help interested beginners to get started and more experienced researchers to gain a
systematic understanding of this field
m Share our perspectives on future directions
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Schedule

Time Section Presenter
01:30-01:50 PM  Section 1: Introduction Maarten
01:50-02:10 PM  Section 2: Preliminaries Yu-An
02:10-03:00 PM  Section 3: Adversarial robustness Yu-An
30min coffee break
03:30-04:20 PM  Section 4: Out-of-distribution robustness Yu-An
04:20-04:30 PM  Section 5: Robust IR in the age of LLMs Yu-An
04:30-04:50 PM  Section 6: Conclusions and future directions Maarten
04:50-05:00 PM Q & A All
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